

ABSTRACT 4999

Preclinical evaluation of MCLA-129, a bispecific antibody targeting EGFR and c-MET on solid tumor cells, in comparison with amivantamab

Merus N.V., Utrecht, The Netherlands

INTRODUCTION

- c-MET activate similar intracellular signal • EGFR and transduction pathways to drive proliferation, survival and invasion
- MET/HGF pathway amplification plays a potential role in resistance to EGFR targeted treatment in solid tumors¹
- In non-small cell lung cancer (NSCLC), resistance to tyrosine kinase inhibitor (TKI) inhibition of mutant EGFR associated with increased c-MET signalling²
- exon-14 skipping mutations result in c-MET • *c*-*MET* overexpression due to impaired c-MET degradation³

The MCLA-129 Biclonics®

α-EGFR

Common Light Chain for 'unforced', natural pairing with 2 different heavy chains

> **Electrostatic attraction** to efficiently drive formation of Biclonics[®]

α-c-ME1

 \odot

IgG Format for efficient manufacturing and predictable *in vivo* behavior

Fc Modifications MCLA-129 is low fucosylated for Fc-enhancement

AFFINITY OF MCLA-129 FOR EGFR AND C-MET

Table 1 | MCLA-129 affinity for EGFR and c-MET was evaluated using a cell-based assay. MCLA-129 and monovalent EGFR (EGFR×RSV) and c-MET (c-MET×RSV) binding antibodies derived from MCLA-129 were radiolabeled with ¹²⁵I. Cell-based affinities of the ¹²⁵I-labeled antibodies were measured in saturation binding experiments using HCC827 NCI_H1975 and NCI_H1993 cell lines

experiments using fielder, nei-fit375 and nei-fit355 cen mes.								
Antibody	HCC827 (nM)	NCI-H1975 (nM)	NCI-H1993 (nM)					
EGFR×RSV	2.553 ± 0.367	2.574 ± 0.286	2.066 ± 0.224					
c-MET×RSV	2.033 ± 0.217	2.181 ± 0.162	1.802 ± 0.073					
MCLA-129	1.778 ± 0.211	0.632 ± 0.085	0.706 ± 0.0714					

radiolabeled antibodies nanomolar range

MCLA-129 BINDING COMPETES WITH EGFR AND C-MET ANTIBODIES

Figure 1 | ELISA to determine competition between antibodies to the EGFR and c-MET receptor. Left panel, schematic representation of the assay. Middle panel, binding of biotinylated EGFR to cetuximab in the presence of a dose range of MCLA-129. Right panel, binding of biotinylated c-MET to an analog of onartuzumab in the presence of a dose range of MCLA-129. * Analog antibody

- MCLA-129 competes with cetuximab for its binding site on EGFR, as has been reported for amivantamab⁵
- MCLA-129 competes with an analog of onartuzumab for its binding site on c-MET, which is distinct from amivantamab⁵

David JJ de Gorter, Alexandre Deshiere, Christine Grooff, Sovann Kaing, Arjen Kramer, Franziska Mortensen, Martijn van Rosmalen, Diana Stork, Helen Vroegindeweij and Cecile AW Geuijen

MCLA-129 binding to NSCLC cells expressing different levels of EGFR and c-MET was quantified using

• Scatchard plot analysis showed that the affinity of MCLA-129 for both EGFR and c-MET is in the low

Competition with onartuzumab

TUMOR CELL BINDING OF MCLA-129 AND AMIVANTAMAB

Figure 2 | Flow cytometry analysis of binding of MCLA-129 and amivantamab to tumor cell lines.

• MCLA-129 and amivantamab maximum binding to tumor cells harboring EGFR or c-MET exon14skipping mutations expressing different levels of EGFR or c-MET

Table 2 | EGFR and c-MET mutations, amplifications and relative expression levels of the examined cell lines. NSCLC: non-small cell lung cancer; GC: gastric cancer; del: deletion; Amp: amplification.

Cell line	Tumor type	EGFR alterations	Relative EGFR expression	c-MET alterations	Relative c-MET expression
HCC827	NSCLC	del (E746, A750)	8.9	-	1.0
NCI-H1975	NSCLC	L858R, T790M	1.0	-	1.0
NCI-H1993	NSCLC	-	2.0	Amp	2.4
Hs746T	GC	-	0.5	exon14, Amp	3.3

LACK OF DOWNMODULATION OF EGFR AND C-MET

c-MET amplification

 MCLA-129 and amivantamab treatment have no effect on EGFR or c-MET total protein levels • Positive controls Sym004^{*} and emibetuzumab^{*} induce EGFR or c-MET reduction

Figure 3 | EGFR and c-MET downmodulation in NSCLC cell lines assessed by immunoblotting. NCI-H1650 and NCI-H441 cells were incubated for 48 hours with MCLA-129, amivantamab, or negative control antibody, or with reference analog antibodies anti-EGFR Sym004 and anti-c-MET emibetuzumab (each 10 µg/mL). * Analog antibodies

ADCP OF MCLA-129 AND AMIVANTAMAB

Figure 4 | ADCP induced against NSCLC cell lines HCC827 and NCI-H1993. pH-sensitive pHrodo dye-labeled HCC827 and NCI-H1993 target cells were incubated with MCLA-129, amivantamab, or negative control antibody and primary macrophage effector cells. ADCP was assessed on the Incucyte[®] system (pHrodo-Red fluorescence > 25 RCU).

tumor cells

MCLA-129

• MCLA-129 and amivantamab induce antibody-dependent cell-mediated phagocytosis (ADCP) of

Figure 5 | ADCC induced by MCLA-129 and amivantamab towards tumor cell lines. High-affinity FcyRIIIa V158-variant (upper panel) or low-affinity FcyRIIIa F158-variant effector cells (lower panel) were used in ADCC reporter assays.

INHIBITION OF ADCC BY SOLUBLE EGFR AND C-MET

greater extent than that of amivantimab

References ¹Tsuji et al. Oncotarget. 2017; 8(42): 71805-71816; ²Engelman et al. Science. 2007; 316(5827): 1039-1043; ³Kong-Beltran et al. Cancer Res . 2006; 66(1): 283-289; ⁴Zheng et al. MAbs. 2016; 8(3): 551-561; ⁵Neijssen et al. J Biol Chem. 2021; 296:100641.

Contact Information David de Gorter

T: +31 85 016 4143; E: d.degorter@merus.nl

ADCC OF MCLA-129 AND AMIVANTAMAB

• Antibody-dependent cell-mediated cytotoxicity (ADCC) activity induced by MCLA-129 is more potent than that induced by amivantamab with either high-affinity (FcyRIII 158V) or low-affinity (FcyRIII 158F) variant Fcy receptor effector cells

MCLA-129
MCLA-129 + sEGFR + sMET
Amivantamab
Amivantamab + sEGFR + sMET
Neg Ctrl Ab

Figure 6 | Effect of soluble EGFR and c-MET on ADCC activity induced by MCLA-129 and amivantamab against NSCLC cell lines. sEGFR: soluble EGFR (100 ng/mL); sMET: soluble c-MET (2000 ng/mL).

In the presence of soluble receptors, ADCC activity of MCLA-129 observed to be preserved to a

SUMMARY

MCLA-129 is an Fc-enhanced common light chain bispecific human IgG1 Biclonics[®] antibody that specifically targets the receptor tyrosine kinases EGFR and c-MET

MCLA-129 binds EGFR and c-MET with low nanomolar affinity

MCLA-129 competes with an analog of the c-MET binding antibody onartuzumab for the same HGFbinding region of c-MET, which is distinct from the binding site of amivantamab

No downmodulation of EGFR or c-MET was observed upon MCLA-129 or amivantamab treatment

MCLA-129 and amivantamab induce ADCP of tumor cells

ADCC activity of MCLA-129 is similar to or more potent than amivantamab, and observed to be preserved to a greater extent than amivantimab in the presence of soluble EGFR and c-MET

These data provide support for the ongoing phase 1/2 study of MCLA-129 in patients with solid tumors (Study MCLA-129-CL01, NCT04868877)

Acknowledgements

The authors thank Sally Hill and Viviana Neviani for providing scientific writing support, and Oncolines for performing western blotting.

